High-resolution interferometric microscope for traceable dimensional nanometrology in Brazil.

I Malinovski, I B Couceiro, R S França, M S Bessa, and C R Silva

INMETRO-DIOPT, Av. N. S. das Graças, 50, Xerém, Duque de Caxias, 25250-020, RJ, Brazil
E-mail: imalinovski@inmetro.gov.br

Abstract: The double color interferometric microscope is developed for step height standards nanometrology traceable to meter definition via primary wave-length laser standards. The setup is based on 2 stabilized lasers to provide traceable measurements of highest possible resolution down to the physical limits of the optical instruments in sub-nanometer to micrometer range of the heights. The wavelength reference is He-Ne 633 nm stabilized laser, the secondary source is Blue-Green 488 nm grating stabilized laser diode. Accurate fringe portion is measured by modulated phase-shift technique combined with imaging interferometry and Fourier processing. Self-calibrating methods are developed to correct systematic interferometer errors.

Keywords: Laser interferometry, phase-shift, optical nanometrology, dimensional metrology, step height standards.

1. INTRODUCTION

Nanometrology is the science of measurement at the nanoscale level. It is considered as the basis of the nanotechnology in quality control of the products [1]. As a part of large international investments in nanoscience various instruments has been developed to support specific nanotechnology measurement needs [2]. We consider common approach of Co-ordination of Nanometrology in Europe (Co-Nanomet) [1], to be a good model for implementation in the near future. According to the Co-Nanomet strategy, measurements in the nanometer range should be traceable back to internationally accepted units, meter in our case of dimensional nanometrology. This requires creation of national validated measurement methods, calibrated scientific instrumentation as well as qualified reference samples. The traceability chain up to the primary nationally realized units for the required measurements must be maintained for any nanometrology quantity under consideration. So far nanometrology has been established internationally in only a few special cases. Principal problem of nanoscience instruments such as SPM, AFM, TEM, etc. is that they are not directly traceable to SI meter unit, but via additional laser interferometers or via secondary calibrated reference standard artifacts. Co-Nanomet delegates traceability maintenance to NMI’s, serving as centers of excellence (CoE). The concrete nanotechnology measurements and instrumentation is delegated to centers of dissemination (CoD): i.e. R&D groups at technical accredited laboratories, institutions and companies involved in nano-tech products implementation. With those recommendations we at Interferometry Laboratory, Optical Metrology Division of INMETRO (CoE, Brazil) are working toward creation of national CMCs for micro- and nano-meter scale with target uncertainty of < 0.5 nm.
Here we report interference microscope (IM) for traceable nanometrology within most interesting range from micro to sub-nanometer. The IM is supposed to provide continuous transfer of the meter unit from traditional length metrology to nanometrology. Relatively easy from technical point of view and historically most studied approach is a height Z one point 1D calibration of the material artifacts using wave-length calibrated light sources. Classical interferometry and IM for many decades has been proved a reliable solution for this calibration needs. Secondary standards used are step height standards (SHS).

Previously at INMETRO/DIOPT nanometrology facility prototype was created, based on single He-Ne 633 nm stabilized laser and phase-shift interference microscopy (PSIM) principle [3]. Serious disadvantage of the system was large averaging time required for achieving target sub-nanometer resolution [4]. This makes low power system very inconvenient, expensive to run and virtually non-suitable for routine nanometrology. Here we report further development of IM with extra light source: 40 mW blue-green grating stabilized laser diode that can be “on-flight” calibrated via direct wavelength comparison to red reference laser in procedure similar to wave-meter operation. We move reference mirror certain distance measuring (digitizing) shape of the interferometer fringes. The phase difference between the lasers gives the wavelength difference.

To cover target range of measurements we used 2 types of reference standards, macroscopic and microscopic artifacts: i) steel gauge block master set (GBS) from Mitutoyo, with two steps of 2 and 10 μm; ii) Al or SiO2 coated steps on monocrystal Si, so called step height standards (SHS).

3. SUB-NANOMETER RESOLUTION

To reach highest possible resolution required by modern nanometrology we improved several key techniques of data acquisition and processing. Detection part of hardware is based on HQ scientific grade 1.5 Mpixel CCD, effective 14 bits intensity resolution with averaging. This imaging output is further improved by pixel binning and 2D FFT Gaussian filtering processor. Final output is fit by multi-parameter sinusoidal function to extract phase values at point of the interest. With our HW we can use either fringes...
along the CCD image in frame (imaging interferometry) or PSI method. The above procedure is used for fringe fraction extraction in both imaging and phase-shifting methods at resolution of about < 100 pm. Such high resolution can be fully benefited from correspondingly high accuracy of the PSI unit. PSI hardware is tilt-moved 3 degrees of freedom unit that is fed with 24 bit DAC output amplified by low noise HV unit. The most complete and informative technique we developed is multiple step phase shifting with 4D (XY-Z-A) imaging voxel cube hyper-data acquisition, where XY directions are pixels (SHS points), Z - phase scan and A - fringe intensity for phase extraction. Result of the single scan is 100-200 series of fringe images sampled at variable stepped Z length of the interferometer reference arm, so called image stack or voxel cube. In Z direction we have multiple point sinusoidal signal lines each corresponding to certain point on the sample (pixel). FFT procedure is applied and topography phase map is calculated. Processing of the 4D data sets requires substantial computational power so that parallel methods with either multicore or multi node architecture is desirable.

4. NOISE AND SYSTEMATIC EFFECTS
Detailed characterization and some comparisons of the IM were performed. Main systematic errors were evaluated, minimized and suitable corrections found. Repeatability and statistics was measured using long series of automatic data acquisition with IM realignments between series. This involves significant amount of data processing and time. Experimental decrease of random noise is shown in Fig.2 for He-Ne laser standard.

Fig.2 Drift of the measurement during several months. 100 nm SHS made of Aluminum.

Hardware and algorithm improvement resulted in accurate phase (length) determination down to sub-nanometer or sub-Ångström level. The resolution test is repeatability of real output (Fig.2) that is good enough to detect drift of about 50 pm of the whole set-up or/and sample.

Aperture correction (obliquity error) typically has largest contribution to uncertainty of IM

![Figure 3](image-url)
instruments. Theoretical analysis and PC-
simulation was made, resulting in numerically
generated function: the value of correction vs.
variable numerical aperture (NA). The function
was compared with data measured at the same
conditions to evaluate real influence of the effect.
Variable iris diaphragm at the IM input was
utilized. Similar effective NA decrease is
produced by eye-piece, that is telescopic variable
zoom unit (20x, Fig.1). The minimized correction
in our geometry is relatively small: >1.002 due to
possibility NA variation down to >0.1 or less
values. For nominal 100 nm for SHS the
correction was measured to be about 100 pm.

Phase-shifter nonlinearity effect results in phase
differences at beginning and end of phase scan
that can be detected analyzing full phase record
wave-form. This effect found to be significant for
fringe displacements 4 integer numbers or more.
The effect was measured and adequate
mathematical model function of modulation
additional term is used to compensate this error
within target 0.1 nm operation.

Wavefront distortions errors follow from unequal
optics and alignment in IM sample and reference
arms. The SHS height as defined by ISO 5436-1-
2000 and measured by interferometry incorporates defects of optics associated with an
on-off-axis path difference (considered as Abbe
offset). Related wavefront correction is
determined by height $Z_{corr}=0$ measurement on
flat area of the same SHS. The correction is
acquired during each measurement cycle. This
procedure corrects associated error down to 100
pm target accuracy.

5. CONCLUSIONS

New step height nanometrology CoE facility was
developed and characterized. By principle of
operation the facility is a hybrid type IM with
combined PSI and fringe pattern processing
algorithms. Equipped with different color wave-
length stabilized lasers the IM provides full
automated traceable self-calibrated operation.

As compared to previous IM prototype with red
He-Ne only [3], high resolution is achieved at
shorter measuring time. Signal-to-noise ratio is
improved of about x10 times. Improvements
pushed system to physical limits of optical
interferometry. This next step in optical
nanometrology was possible due to
implementation at INMETRO / DIOPT optical
frequency comb generator based on femtosecond
laser facility that provides novel light source for
precision dimensional metrology [5-6].

6. ACKNOWLEDGMENTS

This work has been supported by the National
Research Council of Brazil (CNPq/
PROMETRO) and also by FAPERJ.

7. REFERENCES

European Nanometrology 2020.
[2] Koenders L Comparison on Nanometrology
Nano 2 2003 SHS, Metrologia 40
suppl. 04001.
[3] Malinovsky I, Couceiro I B, Franca R S,
Mauricio S L, Azeredo C L S, Almeida C M and
Metrologia, 37 121.
Costa P A and Grieneisen H P H “Traceability of
laser frequency/wavelength calibration through
the frequency comb at Inmetro” Metrologia 2015
submitted.